MATH 2050C Lecture 21 (Ap rb)

Three important theorems
about continuous
$f:[a, b] \rightarrow \mathbb{R}$$\left\{\begin{array}{l}\text { Boundedness Thu } \\ \text { Extreme Value Theorem } \\ \text { Intermediate Value Theorem }\end{array}\right.$ [compactness]
Extreme Value Thu: A cts $f:[a, b] \rightarrow \mathbb{R}$ always achieve its absolute maximum and minimum, ie.

$$
\begin{aligned}
& \exists x^{*} \in[a, b] \text { s.t. } f\left(x^{*}\right)=M:=\sup \{f(x) \mid x \in[a, b]\} \\
& \left.\exists\right|_{1} x_{*} \in[a, b] \text { s.t. } f\left(x_{*}\right)=m:=\inf \{f(x) \mid x \in[a, b]\}
\end{aligned}
$$

not rec. unique
Intermediate Value Theorem [connectedness]
Let $f:[a, b] \rightarrow \mathbb{R}$ be a cts function st. $f(a)<f(b)$.
THEN, $\forall k \in(f(a), f(b)), \exists c \in[a, b]$ st.

$$
f(c)=k
$$

Picture:

Continuity is needed

Proof: It suffices to consider the case:
$f(a)<0<f(b)$ and $k=0$

$[\because$ The general case follows by whsidening $S(x):=f(x)-k$.

$$
S(c)=0 \Leftrightarrow f(c)=k
$$

Q: How to locate a "root" where

$$
f(c)=0 ?
$$

A: Method of bisection.

Define a rested seq of closed \& bold intervals In as for mows.
Take $I_{1}:=[a, b]=:\left[a_{1}, b_{1}\right]$
Consider the midpt. $\frac{a_{1}+b_{1}}{2}$ of I_{1}
Case 1: $f\left(\frac{a_{1}+b_{1}}{2}\right)<0 \Rightarrow$ take $I_{2}:=\left[a_{2}, b_{2}\right]=\left[\frac{a_{1}+b_{1}}{2}, b_{1}\right]$
Case 2: $f\left(\frac{a_{1}+b_{1}}{2}\right)>0 \Rightarrow$ take $I_{2}:=\left[a_{2}, b_{2}\right]=\left[a_{1}, \frac{a_{1}+b_{1}}{2}\right]$
Case 3: $f\left(\frac{a_{1}+b_{1}}{2}\right)=0 \Rightarrow$ DONE, take $c=\frac{a_{1}+b_{1}}{2}$.
Repeat this process for I_{2}.
Fithen you locate a root (Case 3). or you obtain a seq. of closed \& bod intervals $I_{n}:=\left[a_{n}, b_{n}\right]$. Length (Inri)

$$
\text { st }\left\{\begin{array}{l}
I_{n+1} \subseteq I_{n} \quad \forall n \in \mathbb{N} \quad \text { rested } \\
f\left(a_{n}\right)<0<f\left(b_{n}\right) \quad \forall n \in \mathbb{N} .
\end{array}\right.
$$ $=\frac{1}{2} \operatorname{lengen}\left(I_{n}\right)$

By Nested Interval Property. $\bigcap_{n=1}^{\infty} I_{n}=\{c\}$

$$
\left(\because \operatorname{Length}\left(I_{n}\right) \rightarrow 0\right)
$$

Clain: $f(c)=0$.
Pf: Since $\lim \left(a_{n}\right)=\lim \left(b_{n}\right)=C$. Take $n \rightarrow \infty$ in (*), by contimuity of f at c.

$$
f(c) \leqslant 0 \leqslant f(c) \text {, ie } f(c)=0
$$

